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Abstract—An accurate approximation is developed for the
distribution of the instantaneous per-terminal signal-to-noise-
ratio (SNR) of a downlink multiuser multiple-input multiple-
output system with zero-forcing (ZF) precoding. Our analysis
assumes a Ricean fading environment, where we show that the
SNR at a given terminal is well approximated by the gamma
distribution and derive its parameters. The analysis relies on
densities of an arbitrary and a pair of arbitrary eigenvalues
of uncorrelated complex non-central Wishart matrices. Unlike
previous studies, we consider microwave and millimeter-wave
channel parameters with a unique Rice factor for each terminal.
We demonstrate that stronger line-of-sight adversely impacts the
ZF SNR, whilst increasing the Rice factor variability results
in higher peak ZF SNR. Our approximations are insensitive to
changes in the system dimension and operating SNRs.

Index Terms—Gamma distribution, SNR, ZF precoding, mul-
tiuser MIMO.

I. INTRODUCTION

DUE to the broadcast nature of the downlink channel,
multiuser multiple-input multiple-output (MU-MIMO)

systems are known to suffer from inter-user interference [1].
This leads to a lower signal-to-interference-plus-noise-ratio
(SINR) and spectral efficiency at the user terminal, motivating
the use of spatial pre-processing techniques at the base station
(BS) [2]. With channel knowledge at the BS, linear methods
such as zero-forcing (ZF) precoding have been identified as
more practical due to their lower complexity in comparison
with the optimal, non-linear dirty-paper coding [1, 2].

Numerous works have theoretically characterized the SINR
and spectral efficiency gains of downlink MU-MIMO systems
with linear processing (see [1, 2] and references therein).
However, the majority of these works employ the simple
Rayleigh fading model which does not capture the presence
of line-of-sight (LoS), anticipated to be a dominant feature
in the forthcoming small cellular systems [3]. As a result,
understanding the performance of MU-MIMO systems with
LoS is of increasing relevance and importance. Relatively few
works have considered Ricean fading in the above context,
see [4–6], where the focus has largely been on characterizing
the ergodic sum-rate and energy efficiency performance, rather
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than per-terminal performance. For simplicity, [4, 5] evaluate
the system performance with a fixed Rice (K) factor for each
terminal, despite variations around their local terrain.

In contrast to [4–6], we examine the effects of LoS on
the instantaneous per-terminal signal-to-noise-ratio (SNR) of a
downlink MU-MIMO system with ZF precoding. Considering
both microwave and mmWave channel parameters, we derive
an approximation to the distribution of the ZF SNR. We show
that it is well approximated by the gamma distribution and
derive the necessary parameters. Our approximation is accu-
rate over a wide range of operating SNRs, system dimensions,
LoS strength and LoS heterogeneity. To the best of the authors’
knowledge, this level of accuracy over such a wide range of
scenarios has not been achieved previously. Whilst the ZF
performance reduces with an increasing specular component to
the channel, we demonstrate that with a fixed mean, increasing
the variability of the Rice factors leads to an increase in the
peak ZF SNR due to the onset of lower Rice factor values.

Notation: Boldface upper and lower case symbols represent
matrices and vectors. Transpose, Hermitian transpose, inverse
and trace operators are denoted by (·)T, (·)H, (·)−1 and tr {·},
respectively. h ∼ CN

(
µ, σ2

)
denotes a complex Gaussian

distribution for h, where each element of h has mean µ
and variance σ2. || · ||F and | · | denote the Frobenius and
scalar norms, while diag (h) denotes the diagonal matrix
generated from h. E [·], Var [·] and b·c represent the statistical
expectation, variance and floor operators, respectively.

II. SYSTEM MODEL

The downlink of a single-cell, MU-MIMO system in an
urban microcellular (UMi) environment is considered. The
BS, located at the center of a circular cell with radius R,
is equipped with a uniform linear array (ULA) of M transmit
antennas, simultaneously serving L single-antenna terminals
(M ≥ L) in the same time-frequency interval.
A. Channel Model

We assume that the 1 × M normalized fading channel
between the BS and the l-th terminal has a Ricean distribution
and is denoted by

hl =

√
Kl

Kl + 1
h̄l +

√
1

Kl + 1
h̃l. (1)

The specular (LoS) and diffuse (scattered) components of the
channel are denoted by h̄l and h̃l, respectively. Kl denotes
the ratio between the power of the specular and diffuse
components for terminal l and is known as the Rice (K)
factor. We note that Kl is unique to the l-th terminal and
is dependent on the geographical terrain in its proximity.
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Whilst h̃l ∼ CN (0, 1), the specular component of the
channel is governed by the far-field ULA steering response,
h̃l =

[
1, ej2πd cos(ϕl), . . . , ej2πd(M−1) cos(ϕl)

]
. Here, d denotes

the equidistant antenna spacing normalized by the carrier
wavelength and ϕl is the azimuth angle-of-departure (AoD)
of the specular component, for the l-th terminal. In this study,
we consider uncorrelated propagation, thus we set the inter-
element spacing to a half-wavelength at the BS and assume
that the AoDs are uniformly distributed on [0, 2π]. From (1),
the composite L×M fast-fading channel matrix can also be
written as

Hc =
√

Ψ
(√

Kav H̄ + H̃
)

=
√

ΨH, (2)

where Kav = (1/L)
∑L
l=1Kl, Ψ = diag

(
1

K1+1 , . . . ,
1

KL+1

)
is an L × L matrix, H̄ =

[√
K1

Kav
h̄T

1, . . . ,
√

KL

Kav
h̄T
L

]T
is the

L×M specular channel matrix and H̃ is the L×M diffuse
channel matrix containing CN (0, 1) entries, respectively. We
model the distribution of terminals with a uniform density
with respect to the coverage area of the cell. An exclusion
radius of r0 is assumed, such that the closest terminal to
the BS is a distance r0 away. The received power at the l-
th terminal is denoted by β̃l = ρAζl (r0/rl)

τ and is com-
posed of the total transmit power, ρ, with large-scale fading
effects. In particular, A is the unit-less constant for geometric
attenuation at a reference distance r0, rl is the link distance
between the BS and terminal l, τ is the attenuation exponent
and ζl represents the effects of log-normal shadowing, i.e.,
10 log10 (ζl) ∼ N

(
0, σ2

sh

)
.

Since Ψ simply scales the terminal channels, the overall
channel can be viewed as a small-scale fading channel ma-
trix, H , with equivalent received powers, βl = Ψl,l β̃l =
β̃l (Kl + 1)

−1. This overall channel is used throughout the
paper, which allows us to leverage previous analytical results
on channels of the form in (2). For the remainder of the paper,
the received SNR is defined as the ratio of the long term
received signal power to the noise power at the terminal.

B. ZF Precoding and Per-Terminal SNR
The received signal at terminal l can be expressed as

yl =

√
βl
η
hlglsl + zl, (3)

where hl is the l-th row of H , gl is the un-normalized pre-
coding vector for terminal l, sl is the data symbol desired for
terminal l, with E

[
|sl|2

]
= 1, η is the precoding normalization

parameter and zl ∼
(
0, σ2

l

)
is the additive white Gaussian

noise at terminal l. We consider ZF precoding to design the
downlink precoding vectors, where gl is the l-th column of the
M×L precoding matrix, G = HH

(
HHH

)−1
. The precoding

matrix is normalized by η = ||G||2F/L, ensuring that the total
transmit power remains ρ. From (3), the ZF SNR for terminal
l is defined as

SNRZF
l =

βl
σ2
l η

=
βl

σ2
l tr{(HHH)

−1}
. (4)

III. DISTRIBUTIONAL APPROXIMATION TO THE ZF
PER-TERMINAL SNR

The distribution of the ZF SNR in (4) is particularly difficult
to analyze, since it is a random function of the uncorrelated

complex non-standard, non-central Wishart matrix formed
by HHH. Hence, analytical expressions for the probability
density and cumulative distribution appear intractable. There-
fore, we approximate the distribution of the ZF SNR with
the gamma distribution. Our motivation for considering the
gamma distribution comes from previous studies which have
shown that in the case when no LoS is present (i.e., Rayleigh
fading), the ZF SNR follows the chi-squared distribution
[7], a special case of the gamma distribution. More general
studies with minimum-mean-squared-error (MMSE) receive
combining under spatially correlated Rayleigh fading [8] and
the presence of LoS (where the desired terminal is subject
to Ricean fading, whilst the multiuser interference is subject
to Rayleigh fading [9]) have shown that the MMSE SINR
is well approximated by the gamma distribution. Here, with
ZF precoding, we further extend the above results considering
the most general scenario where each terminal (desired or
interfering) experiences Ricean fading with a unique Rice
factor. In order to make such an approximation, the shape and
scale parameters of the gamma distribution have to be derived,
as shown in the subsequent theorem.

Theorem: If the channel to terminal l follows a Ricean
distribution and SNRZF

l is modeled as a gamma random
variable, then δ = tr{

(
HHH

)−1} follows an inverse gamma
distribution, denoted by Γ (α, %)

−1, with the shape and scale
parameters

α = 2 +
E [δ]

2

Var [δ]
and % =

βk{
1 + E[δ]2

Var[δ]

}
E [δ]

, (5)

Proof: α and % are derived via the method of moments. If
δ−1 is Γ (α, %), using its standard properties we observe that

E
[
δ−1
]

= ((α− 1) %)
−1
, (6)

and
Var
[
δ−1
]

=
(
(α− 1) (α− 2) %2

)−1
. (7)

Note that re-arranging (6) and (7) allows us to derive (5).
Moreover, δ = tr{

(
HHH

)−1} =
∑L
i=1 λ

−1
i , where λi is the i-

th eigenvalue of HHH. From here it is straightforward to show
that E [δ] = LE

[
λ−1

]
, where λ is an arbitrary eigenvalue

of HHH. Also, as Var [δ] = E
[∑L

i=1

∑L
j=1 (λiλj)

−1 ] −
L2E

[
λ−1

]2
, the first term of Var [δ] can be re-written as

Y = E
[∑L

i=1 λ
−2
i +

∑L
i=1

∑L
j=1,j 6=i λ

−1
i λ−1

j

]
= LE

[
λ−2

]
+

L (L− 1)E
[
λ−1

1 λ−1
2

]
, where λ1 and λ2 are two distinct

arbitrary eigenvalues of HHH. Hence, E
[
λ−1

]
, E
[
λ−2

]
and

E
[
λ−1

1 λ−1
2

]
govern E [δ] and Var [δ], which are derived in the

subsequent analysis.

A. Calculation of E
[
λ−1

]
By definition

E
[
λ−1

]
=

∫ ∞
0

1

λ
fλ(λ) dλ, (8)

where fλ (λ) is the arbitrary eigenvalue density given in
Theorem 1 of [10], from which (8) can be expressed as

E
[
λ−1

1

]
=

∫ ∞
0

λ−1 e−
∑L

i=1 Φi

L ((M − L)!)
L

e−λ
(
K̄ + 1

)
λ

L∑
j=1

((
K̄ + 1

)
λ
)a
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L∑
i=1
i6=j

∞∑
p=0

((
K̄ + 1

)
Φiλ

)pD (i, j)

p! (M − L+ 1)p

/{
L∏
k<q

(Φq − Φk)

}
dλ, (9)

where a = M − L + j, Φi is the i-th eigenvalue of K̄H̄H̄H,
(a)b = (a+b−1)!

(a−1)! and D (i, j) is the (i, j)-th co-factor of
an L × L matrix A, whose (l, k)-th entry is (A)l,k =
(M − L+ k − 1)! 1F1 (M − L+ k,M − L+ 1,Φl), with
1F1 being the Kummer confluent hypergeometric function.
Extracting the constants and simplifying (9) yields

E
[
λ−1

1

]
=

e−
∑L

i=1 Φi

L ((M − L)!)
L

1∏L
k<q (Φq − Φk)

L∑
j=1

m∑
i=1

∞∑
p=0

(
K̄+1

)a
((
K̄ + 1

)
Φi
)pD (i, j)

p! (M − L+ 1)p

∫ ∞
0

λM−L+j+p−2e−λ(K̄+1)dλ. (10)

Denoting t = M − L+ j + p− 2, the integral in (10) can be
solved in closed-form as∫ ∞

0

λte−λ(K̄+1)dλ = t!
(
K̄ + 1

)−t−1
. (11)

Substituting the solution of the integral in (11) and multiplying
the resultant expression by L yields an expression for E [δ].

B. Calculation of E
[
λ−2

]
Following the methodology in the calculation of E

[
λ−1

]
,

E
[
λ−2

]
has the exact same form as E

[
λ−1

]
, where t in (10)

and (11) is replaced by t̃ = M − L+ j + p− 3.

C. Calculation of E
[
λ−1

1 λ−1
2

]
In order to evaluate Y , the first term of Var [δ], we require

E
[
λ−1

1 λ−1
2

]
. By definition

E
[
λ−1

1 λ−1
2

]
=

∫ ∞
0

∫ ∞
0

λ−1
1 λ−1

2 fλ1,λ2
(λ1, λ2) dλ1dλ2, (12)

where fλ1,λ2
(λ1, λ2) is the recently derived joint density of

two distinct arbitrary eigenvalues, (λ1, λ2), as presented in
Theorem 2 of [6]. Thus, (12) can be written as

E
[
λ−1

1 λ−1
2

]
=

∫ ∞
0

∫ ∞
0

Θ

L−1∑
i=0

L−1∑
j=0

L∑
u=1

L∑
v=1

(−1)
w

Ξ̃ (u, v; i, j)

Xu,i (λ1)Xv,j (λ2) dλ1dλ2, (13)

where Θ = χ {(ω − 1)!}L (−1)
bL2 c (M − 2)! with χ =

e−
∑L

i=1Φi

L((M−L)!)L
L∏

k<q

(Φq−Φk)

and ω = M − L + 1, respectively.

Moreover, w = i+ j + u+ v − p (i, j)− x (u, v) with

p(i, j) =

{
0 ; j ≤ i
1 ; j > i

and x(u, v) =

{
0 ; v ≤ u
1 ; v > u,

(14)

while Ξ̃ (u, v; i, j) = (ΦuΦv)
−(M−L)/2

Ξ (u, v; i, j) where
Ξ (u, v; i, j) is a L × L determinant with rows u, v and
columns i, j removed, with the d-th entry in the f -th column
is given by Γ (ω + f − 1) /Γ (M − L+ 1)1 F1(M − L +
f,M − L + 1,Φd). Here, Γ (·) denotes the gamma function.
Xa,b (λ) = λ(M−L)/2+b e−λIM−L

(
2
√

Φaλ
)
, where IM−L (·)

is a modified Bessel function of the first kind. Substituting the
definition of Xu,i (λ1) and Xv,j (λ2) into (13) and performing
some mathematical simplifications results in

E
[
λ−1λ−1

2

]
=Θ

L−1∑
i=0

L−1∑
j=0

L∑
u=1

L∑
v=1

(−1)
w

Ξ̃ (u, v; i, j) ∆u,i (λ1)

∆v,j (λ2) , (15)

where ∆a,b (λ) =
∫∞

0
λ((M−L)/2)+b−1e−λIM−L

(
2
√

Φaλ
)
dλ.

For M−L ≥ 1 and b > 0, the above integral is given in closed
form in [11, Eq. (6.643.2)]. For M−L = 0 and b = 0, a series
expansion solution is required, as in [6]. Thus, the first term of
Var [δ], Y , can be expressed as (16). Subtracting L2E

[
λ−1

]2
from (16) yields the expression for Var [δ], concluding the
proof. �
D. Remarks

(i) In the derivation of E [δ] and Var [δ], we used the eigen-
value densities, fλ (λ) and fλ1,λ2

(λ1, λ2), of the instantaneous
channel correlation matrix, HHH, which has an uncorrelated
complex non-central Wishart structure. This is in contrast
to other work where a further approximation was made [4,
5] by approximating the non-central structure by its central
equivalent via an adjustment of the covariance matrix.

(ii) The result holds for any system dimension (number of
serving antennas at the BS and terminals in the system) and
operating SNR. Moreover, the result is robust to the level of
LoS present in the system. It also remains tight for Rayleigh
fading channels which exhibit no LoS effects. Our analysis
methodology can easily be extended to other system types,
such as multicellular systems and distributed antenna arrays
due to the general structure of the ZF SNR in (4).

IV. NUMERICAL RESULTS

We employ a statistical approach to determine whether a
given terminal experiences LoS or non-LoS (NLoS) propaga-
tion. The NLoS and LoS probabilities are governed by the
link distance, from which other link characteristics such as
the attenuation exponent and shadow-fading standard deviation
are selected. We consider UMi propagation parameters for
microwave [12] and mmWave [13, 14] frequencies at 2 and 28
GHz, respectively. For both cases, the cell radius (R), the ex-
clusion area (r0) and the transmit power (ρ) are fixed to 100 m,
10 m and 30 dBm, respectively. Noise variances of -120 dBm
and -113 dBm are obtained at 20 and 100 MHz bandwidths for
the microwave and mmWave cases, whilst the LoS and NLoS
attenuation exponents (τ ) are given by 2.2, 3.67 and 2, 2.92
at microwave and mmWave, respectively. The LoS attenuation
constants (A) are 28 dB and 61.4 dB, whilst the NLoS
attenuation constants are 22.7 and 72 dB. Moreover, LoS and
NLoS shadow-fading standard deviations (σsh) are 3, 4 and
5.8, 8.7 for the microwave and mmWave cases. The Ricean K-
factor has a log-normal density with a mean of 9 and standard
deviation of 5 dB for microwave (K ∼ ln (9, 5)) [12] and a
mean of 12 and standard deviation of 3 dB for the mmWave
(K ∼ ln (12, 3)) [14] cases, respectively. At microwave,
the probability of terminal l experiencing LoS is given by
PLoS (rl) =

(
min (18/rl, 1)

(
1− e−rl/36

))
+ e−rl/36. Equiv-

alently, at mmWave PLoS =
(
1− Pout(rl)

)
e−ιLoSrl , where

1/ιLoS = 67.1 meters and Pout, the outage probability is set to
0 for simplicity. Naturally, for both cases, PNLoS = 1−PLoS.

With M = 30 and L = 3, Fig. 1 demonstrates the accuracy
of the derived approximation in response to changes in the
operating SNRs. In addition to the microwave and mmWave
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Y =

[
L

{
χ

L∑
j=1

L∑
i=1

∞∑
p=0

(
K̄ + 1

)a ((K̄ + 1
)

Φi
)pD (i, j)

p! (M − L+ 1)p
t̃!
(
K̄ + 1

)−t̃−1

}
+ L (L− 1)

{
E
[
(λ1λ2)

−1
]}]

. (16)
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Fig. 1. Per-Terminal SNRZF with M = 30, L = 3 at received SNR=−10
dB and 10 dB.
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and 60.

cases, we consider the case when no LoS is present, i.e.,
Rayleigh fading, as a baseline for comparison. Two trends
can be observed: (1) Increasing the mean of K adversely
affects the terminal SNR. This is due to the fact that with
a fixed transmit power, an increase in the mean of K implies
a stronger specular component in the channel, which reduces
the amount of multi-path and in-turn results in a lower channel
rank. Equivalently, this effect can be interpreted as an increase
in the level of channel correlation leading to fewer usable
spatial degrees of freedom; (2) The proposed approximations
are insensitive to changes in SNRs and only the most marginal
deviation between the simulated and approximated responses
can be observed for both microwave and mmWave cases. The
approximations also remain tight in the Rayleigh fading case,
consistent with Remark (ii). In Fig. 2, we evaluate the accuracy
of the proposed approximation with increasing numbers of BS
antennas at SNR=10 dB with L = 3. Naturally, increasing the
number of serving antennas leads to higher terminal SNRs. We
also study the effects of Rice factor heterogeneity, where we
show that increasing the variability of the Rice factor from
K = 9 dB fixed for all terminals to a variable K with a
mean of 9 dB enhances the peak ZF SNR. This is because
a wider log-normal density allows for very low Rice factors
to be drawn, resulting in improved performance. In contrast
to this, the cell-edge and median ZF SNRs tend to reduce,

as the magnified Rice factor variability also produces large
Rice factors. In addition to the above, we can readily observe
that our approximations retain their tightness and are robust
to changes in the system size, consistent with Remark (ii).

V. CONCLUSION

We have presented an approximation to the distribution
of the instantaneous per-terminal SNR of a ZF MU-MIMO
system. We show that the ZF SNR approximately follows a
gamma distribution and derive its parameters. The approxi-
mation is robust to changes in system size, SNRs and can
be applied to both LoS and NLoS channels. Densities of an
arbitrary and a joint pair of arbitrary eigenvalues were instru-
mental in deriving the gamma parameters. With microwave
and mmWave parameters, our results indicate that increasing
the specular component of the channel reduces the ZF SNR,
whilst increasing the Rice factor variability increases the peak
ZF SNR and reduces the cell-edge and median ZF SNRs.
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